ПAmIBIA UПIVERSITY
OF SCIECCE AחD TECHOOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE NAME: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
SESSION: JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS DR. MARIUS MUTORWA
MODERATOR:	DR. JULIEN LUSILAO

INSTRUCTIONS
1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly 4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page and attachments)

SECTION A

QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. To which of the following causes could the slow rate of a chemical reaction be attributed to?
A. a low activation energy
B. a high activation energy
C. the presence of a catalyst
D. the temperature is high
E. the concentrations of the reactants are high
2. The steps below represent a proposed mechanism for the catalysed oxidation of CO by O_{3}.

$$
\begin{aligned}
& \text { Step 1: } \mathrm{NO}_{2}(g)+\mathrm{CO}(g) \rightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g) \\
& \text { Step 2: } \mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
\end{aligned}
$$

What are the overall products of the catalysed reaction?
A. CO_{2} and O_{2}
B. NO and CO_{2}
C. NO_{2} and O_{2}
D. NO and O_{2}
E. NO_{2} and CO_{2}
3. The oxidation number of each chromium atom in $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is:
A. +5
B. +6
C. +7
D. +12
E. None of the above
4. In which of the following unbalanced reactions does chromium undergo oxidation?
A. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}$
B. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}^{2+}$
C. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
D. None of the above
E. $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}^{\circ}$
5. For which of the following chemical changes does the heat of reaction $(\Delta \mathrm{H})$ correspond to a heat of formation ($\Delta \mathrm{H}_{\text {formation }}$)?
A. $\mathrm{N}(\mathrm{g})+3 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{C}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}$
D. $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
E. None of the above
6. The pH of a $1.25 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ solution is:

A 7.00
B 2.90
C 11.10
D 10.90
E 3.10
7. Which of the following describes the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=14.00$
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=14.00$
C. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
D. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
E. None of the above
8. A buffer solution was prepared by mixing 100 mL of a 1.2 M NH solution and 400 mL of a $0.5 \mathrm{M} \mathrm{NH} 4 \mathrm{Cl}^{2}$ solution. What is the pH of this buffer solution, assuming a final volume of 500 mL and $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$?
A. 1.08
B. 4.96
C. 5.8
D. 9.03
E. 8
9. Which of the following is true regarding the relative molar rates of disappearance of the reactants and the appearance of the products?

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

I. N_{2} appears at the same rate that H_{2} disappears.
II. $\mathrm{H}_{2} \mathrm{O}$ appears at the same rate that NO disappears.
III. NO disappears at the same rate that H_{2} disappears.
A. I only.
B. I and II only.
C. I and III only.
D. II and III only.
E. I, II and III
10. Write the appropriate equilibrium constant expression K_{c} for the following reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. $\mathrm{K}_{\mathrm{c}}=\mathrm{k}\left[\mathrm{CO}_{2}\left[\mathrm{O}_{2}\right]\right.$
B. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right] /[\mathrm{CO}]\left[\mathrm{O}_{2}\right]$
C. $\mathrm{K}_{\mathrm{c}}=[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{CO}_{2}\right]$
D. $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]^{2} /\left[\mathrm{CO}^{2}\left[\mathrm{O}_{2}\right]\right.$

E . None of the above
11. Which two bonds are least similar in polarity?
A. $\mathrm{Al}-\mathrm{Cl}$ and $\mathrm{I}-\mathrm{Br}$
B. O-F and Cl-F
C. B-F and Cl-F
D. $\mathrm{I}-\mathrm{Br}$ and $\mathrm{Si}-\mathrm{Cl}$
E. C-Cl and Ge-Cl
12. In the Lewis structure of $\mathrm{HCO}_{3}{ }^{-}$, the formal charge on H is \qquad and the formal charge on C is \qquad .
A. $-1,-1$
B. 0,0
C. $0,-1$
D. $+1,-1$
E. $-1,+1$
13. How many different types of resonance structures can be drawn for the ion $\mathrm{SO}_{3}{ }^{2-}$ where all atoms satisfy the octet rule?
A. 1
B. 2
C. 3
D. 4
E. 5
14. After drawing the Lewis dot structure of HOClO_{2}, pick the INCORRECT statement of the following.
A. The oxygen bonded to the hydrogen has two lone pairs.
B. The oxygens not bonded to hydrogen have three lone pairs.
C. The O-Cl bonds are all double bonds.
D. The $\mathrm{H}-\mathrm{O}$ bond is a single bond.
E. Chlorine has a full octet.
15. Which of the pairs of molecules below have the same hybridization on the central atom? (The central atom is underlined in each molecule.)
A. $\underline{\mathrm{CO}}_{2}, \underline{\mathrm{C}} \mathrm{H}_{4}$
B. $\mathrm{H}_{2} \mathrm{CO}, \mathrm{BeH}_{2}$
C. $\mathrm{BCl}_{3}, \mathrm{HNO}$
D. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HE}$
E. $\mathrm{NH}_{3}, \mathrm{HNO}$
16. Find the correct stereochemistry for the following alkenes:

A

B

C

D
A. \mathbf{A} is Z, \mathbf{B} is Z, \mathbf{C} is E, \mathbf{D} is E
B. \mathbf{A} is Z, \mathbf{B} is E, \mathbf{C} is Z, \mathbf{D} is E
C. \mathbf{A} is E, \mathbf{B} is E, \mathbf{C} is Z, \mathbf{D} is E
D. \mathbf{A} is E, \mathbf{B} is E, \mathbf{C} is Z, \mathbf{D} is Z
E. \mathbf{A} is Z, \mathbf{B} is Z, \mathbf{C} is E, \mathbf{D} is Z
17. Which is the correct Lewis structure for acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$?

a)

b)

c)

d)
A. a
B. b
C. c
D. d
E. none of the above
18.For which of the structures below does carbon show the correct orbital hybridization?
$\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
CH_{4}
$\mathrm{HC} \equiv \mathrm{N}$
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
sp
I
sp^{2}
II
sp^{2}
III
sp
$\stackrel{s p}{\mathrm{~V}}$
A. II, IV and V
B. II, III and IV
C. I, II and III
D. I, IV and V
E. II, IV and V
19. Which of the following statements concerning lattice energy is incorrect?
A. MgO has a larger lattice energy than NaF .
B. The lattice energy for a solid with $2+$ and 2 -ions should be two times that for a solid with 1+ and 1-ions.
C. MgO has a larger lattice energy than LiF.
D. Lattice energy is often defined as the change in energy that occurs when an ionic solid is separated into isolated ions in the gas phase.
E. All of these are true.
20. Which of the following compounds has the most ionic bonding (i.e. has the highest percentage of ionic character)?
A. CaF_{2}
B. Lil
C. OF_{2}
D. CsF
E. LiF
21. What is the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{CCO}$?
A. 109°
B. 180°
C. 120°
D. 90°
E. 45°
22. Which of the following statements is correct concerning the electron configuration $[\mathrm{Ne}] 3 \mathrm{~s}^{1} 3 \mathrm{p}^{1}$?
A. It may represent a ground-state electron configuration of a Al^{+}cation.
B. It may represent an excited-state electron configuration of a Mg atom.
C. It may represent an excited-state electron configuration of a Ne^{-}anion.
D. It may represent a ground-state electron configuration of a Mg^{+}cation.
E. None of the above is correct
23. A nonpolar bond will form between two \qquad atoms of \qquad electronegativity.
A. different, opposite
B. identical, different
C. different, different
D. identical, equal
E. None of the above is correct
24. Which of the following compounds does not contain a $\mathrm{C}=\mathrm{O}$ bond?
A. Ketones
B. Aldehydes
C. Esters
D. Ethers
E. All contain the $\mathrm{C}=\mathrm{O}$ bond
25. Give the IUPAC name for the following structure.

A. 2-methyl-3-ethylheptane
B. 3-ethyl-2methylheptane
C. 5-isopropyloctane
D. 4-isopropyloctane
E. 2-methyl-3-propylheptane

SECTION B:

QUESTION 1:

Assign the oxidation states for the underlined atom in each of the following:
a. NiO_{2}
b. $\mathrm{Fe}_{3} \mathrm{O}_{4}$
c. XeOF_{4}
d. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$
e. CO

QUESTION 2:

A buffer solution contains $0.25 \mathrm{M} \mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$ and $0.40 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. Calculate the pH of the solution.

QUESTION 3:

a. What are the factors affecting reaction rates?
b. Relate the rates for the disappearance of reactants and formation of products for the following reaction:

$$
\begin{equation*}
\mathrm{PH}_{3}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \tag{3}
\end{equation*}
$$

c. Sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ decomposes to fructose and glucose in acid solution with rate law:

$$
\text { Rate }=\mathrm{k}\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right] \quad \mathrm{k}=0.216 \mathrm{~h}^{-1} \text { at } 25^{\circ} \mathrm{C}
$$

What is the half-life of sucrose at this temperature?

QUESTION 4:

NO_{2} can exist in equilibrium with colourless gas $\mathrm{N}_{2} \mathrm{O}_{4} . \mathrm{K}_{\mathrm{c}}=170$ at 298 K .

$$
\mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

Suppose the concentration of NO_{2} is 0.015 M and concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.025 M .
a. If the system is not in equilibrium, will Q be larger than, smaller than or equal to Kc ?
b. In which direction will the reaction proceed to achieve equilibrium?

QUESTION 5:

Consider the Lewis structure for ethyl acetate below, used as a solvent and aroma enhancer.

5.1 How many valence electrons are used to make the sigma bonds in the molecule?
5.2 What is the hybridization at each of the numbered atoms (i.e. $\mathrm{C} 1, \mathrm{C} 2$ and O 3)?

QUESTION 6

Many classes of organic compounds undergo characteristic types of reactions.
Identify the type of organic reaction for the transformations below.
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NaCN} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}(+\mathrm{NaBr})$
(b)

QUESTION 7

Identify the functional groups in the following molecules.
(a)

(b)

(c)

(d)

THE END GOODLUCK

USEFUL CONSTANTS:

> Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$ $=0.083145 \mathrm{dm} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ $=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}$ $1 \mathrm{l} \cdot \mathrm{K}^{-1}$ $1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$ $1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr

Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

1																	18
$\mathbf{1}$ \mathbf{H} 1.00794	2											13	14	15	16	17	2 $\mathbf{H e}$ 4.00260
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	\mathbf{P}	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	$\mathbf{X e}$
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	${ }_{131.29}$
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
$\mathrm{Cs}^{\text {c }}$	Ba	Lu	${ }_{\mathbf{H f}}$	Ta	W	Re	Os	Ir	Pt	Au	$\mathbf{H g}$	Tl	Pb	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
${ }_{(2 \mathrm{Fr}}^{\mathbf{F}}$	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.92	162.50	161.930	167.2	T66.934	173.04

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
7.028	232.038	231.03	238.02	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	59)

Lanthanides:

Actinides:

